![]() |
![]() |
![]() |
![]() |
![]() |
1-1-2. The Science of BiologyLearning Objectives
(a)
![]() (b) ![]() Figure 1: Formerly called blue-green algae, these (a) cyanobacteria, shown here at 300x magnification under a light microscope, are some of Earth’s oldest life forms. These (b) stromatolites along the shores of Lake Thetis in Western Australia are ancient structures formed by the layering of cyanobacteria in shallow waters. (credit a: modification of work by NASA; credit b: modification of work by Ruth Ellison; scale-bar data from Matt Russell) What is biology? In simple terms, ![]() Figure 2: Escherichia coli (E. coli) bacteria, seen in this scanning electron micrograph, are normal residents of our digestive tracts that aid in the absorption of vitamin K and other nutrients. However, virulent strains are sometimes responsible for disease outbreaks. (credit: Eric Erbe, digital colorization by Christopher Pooley, both of USDA, ARS, EMU) The Process of ScienceBiology is a science, but what exactly is science? What does the study of biology share with other scientific disciplines? The steps of the scientific method will be examined in detail later, but one of the most important aspects of this method is the testing of hypotheses by means of repeatable experiments. A These areas of study are still sciences, however. Consider archeology—even though one cannot perform repeatable experiments, hypotheses may still be supported. For instance, an archeologist can hypothesize that an ancient culture existed based on finding a piece of pottery. Further hypotheses could be made about various characteristics of this culture, and these hypotheses may be found to be correct or false through continued support or contradictions from other findings. A hypothesis may become a verified theory. A Natural SciencesWhat would you expect to see in a museum of natural sciences? Frogs? Plants? Dinosaur skeletons? Exhibits about how the brain functions? A planetarium? Gems and minerals? Or, maybe all of the above? Science includes such diverse fields as astronomy, biology, computer sciences, geology, logic, physics, chemistry, and mathematics (Figure 3). However, those fields of science related to the physical world and its phenomena and processes are considered ![]() Figure 3: The diversity of scientific fields includes astronomy, biology, computer science, geology, logic, physics, chemistry, mathematics, and many other fields. (credit: “Image Editor”/Flickr) There is no complete agreement when it comes to defining what the natural sciences include, however. For some experts, the natural sciences are astronomy, biology, chemistry, earth science, and physics. Other scholars choose to divide natural sciences into Not surprisingly, the natural science of biology has many branches or subdisciplines. Cell biologists study cell structure and function, while biologists who study anatomy investigate the structure of an entire organism. Those biologists studying physiology, however, focus on the internal functioning of an organism. Some areas of biology focus on only particular types of living things. For example, botanists explore plants, while zoologists specialize in animals. Scientific ReasoningOne thing is common to all forms of science: an ultimate goal “to know.” Curiosity and inquiry are the driving forces for the development of science. Scientists seek to understand the world and the way it operates. To do this, they use two methods of logical thinking: inductive reasoning and deductive reasoning.
Deductive reasoning or deduction is the type of logic used in hypothesis-based science. In deductive reason, the pattern of thinking moves in the opposite direction as compared to inductive reasoning. Both types of logical thinking are related to the two main pathways of scientific study: descriptive science and hypothesis-based science. The Scientific MethodBiologists study the living world by posing questions about it and seeking science-based responses. This approach is common to other sciences as well and is often referred to as the scientific method. The scientific method was used even in ancient times, but it was first documented by England’s Sir Francis Bacon (1561–1626) (Figure 4), who set up inductive methods for scientific inquiry. The scientific method is not exclusively used by biologists but can be applied to almost all fields of study as a logical, rational problem-solving method. ![]() Figure 4: Sir Francis Bacon (1561–1626) is credited with being the first to define the scientific method. (credit: Paul van Somer) The scientific process typically starts with an observation (often a problem to be solved) that leads to a question. Let’s think about a simple problem that starts with an observation and apply the scientific method to solve the problem. One Monday morning, a student arrives at class and quickly discovers that the classroom is too warm. That is an observation that also describes a problem: the classroom is too warm. The student then asks a question: “Why is the classroom so warm?” Proposing a HypothesisRecall that a hypothesis is a suggested explanation that can be tested. To solve a problem, several hypotheses may be proposed. For example, one hypothesis might be, “The classroom is warm because no one turned on the air conditioning.” But there could be other responses to the question, and therefore other hypotheses may be proposed. A second hypothesis might be, “The classroom is warm because there is a power failure, and so the air conditioning doesn’t work.” Once a hypothesis has been selected, the student can make a prediction. A prediction is similar to a hypothesis but it typically has the format “If . . . then . . . .” For example, the prediction for the first hypothesis might be, “If the student turns on the air conditioning, then the classroom will no longer be too warm.” Testing a HypothesisA valid hypothesis must be testable. It should also be While this “warm classroom” example is based on observational results, other hypotheses and experiments might have clearer controls. For instance, a student might attend class on Monday and realize she had difficulty concentrating on the lecture. One observation to explain this occurrence might be, “When I eat breakfast before class, I am better able to pay attention.” The student could then design an experiment with a control to test this hypothesis. In hypothesis-based science, specific results are predicted from a general premise. This type of reasoning is called deductive reasoning: deduction proceeds from the general to the particular. But the reverse of the process is also possible: sometimes, scientists reach a general conclusion from a number of specific observations. This type of reasoning is called inductive reasoning, and it proceeds from the particular to the general. Inductive and deductive reasoning are often used in tandem to advance scientific knowledge (Figure 6). Art Connection:![]() Figure 5: The scientific method consists of a series of well-defined steps. If a hypothesis is not supported by experimental data, a new hypothesis can be proposed. In the example below, the scientific method is used to solve an everyday problem. Order the scientific method steps (numbered items) with the process of solving the everyday problem (lettered items). Based on the results of the experiment, is the hypothesis correct? If it is incorrect, propose some alternative hypotheses.
Art Connection:![]() Figure 6: Scientists use two types of reasoning, inductive and deductive reasoning, to advance scientific knowledge. As is the case in this example, the conclusion from inductive reasoning can often become the premise for inductive reasoning. Decide if each of the following is an example of inductive or deductive reasoning.
The scientific method may seem too rigid and structured. It is important to keep in mind that, although scientists often follow this sequence, there is flexibility. Sometimes an experiment leads to conclusions that favor a change in approach; often, an experiment brings entirely new scientific questions to the puzzle. Many times, science does not operate in a linear fashion; instead, scientists continually draw inferences and make generalizations, finding patterns as their research proceeds. Scientific reasoning is more complex than the scientific method alone suggests. Notice, too, that the scientific method can be applied to solving problems that aren’t necessarily scientific in nature. Two Types of Science: Basic Science and Applied ScienceThe scientific community has been debating for the last few decades about the value of different types of science. Is it valuable to pursue science for the sake of simply gaining knowledge, or does scientific knowledge only have worth if we can apply it to solving a specific problem or to bettering our lives? This question focuses on the differences between two types of science: basic science and applied science.
In contrast, ![]() Figure 7: After Hurricane Ike struck the Gulf Coast in 2008, the U.S. Fish and Wildlife Service rescued this brown pelican. Thanks to applied science, scientists knew how to rehabilitate the bird. (credit: FEMA) Some individuals may perceive applied science as “useful” and basic science as “useless.” A question these people might pose to a scientist advocating knowledge acquisition would be, “What for?” A careful look at the history of science, however, reveals that basic knowledge has resulted in many remarkable applications of great value. Many scientists think that a basic understanding of science is necessary before an application is developed; therefore, applied science relies on the results generated through basic science. Other scientists think that it is time to move on from basic science and instead to find solutions to actual problems. Both approaches are valid. It is true that there are problems that demand immediate attention; however, few solutions would be found without the help of the wide knowledge foundation generated through basic science. One example of how basic and applied science can work together to solve practical problems occurred after the discovery of DNA structure led to an understanding of the molecular mechanisms governing DNA replication. Strands of DNA, unique in every human, are found in our cells, where they provide the instructions necessary for life. During DNA replication, DNA makes new copies of itself, shortly before a cell divides. Understanding the mechanisms of DNA replication enabled scientists to develop laboratory techniques that are now used to identify genetic diseases, pinpoint individuals who were at a crime scene, and determine paternity. Without basic science, it is unlikely that applied science would exist. Another example of the link between basic and applied research is the Human Genome Project, a study in which each human chromosome was analyzed and mapped to determine the precise sequence of DNA subunits and the exact location of each gene. (The gene is the basic unit of heredity; an individual’s complete collection of genes is his or her genome.) Other less complex organisms have also been studied as part of this project in order to gain a better understanding of human chromosomes. The Human Genome Project (Figure 8) relied on basic research carried out with simple organisms and, later, with the human genome. An important end goal eventually became using the data for applied research, seeking cures and early diagnoses for genetically related diseases. ![]() Figure 8: The Human Genome Project was a 13-year collaborative effort among researchers working in several different fields of science. The project, which sequenced the entire human genome, was completed in 2003. (credit: the U.S. Department of Energy Genome Programs (http://genomics.energy.gov)) While research efforts in both basic science and applied science are usually carefully planned, it is important to note that some discoveries are made by Reporting Scientific WorkWhether scientific research is basic science or applied science, scientists must share their findings in order for other researchers to expand and build upon their discoveries. Collaboration with other scientists—when planning, conducting, and analyzing results—are all important for scientific research. For this reason, important aspects of a scientist’s work are communicating with peers and disseminating results to peers. Scientists can share results by presenting them at a scientific meeting or conference, but this approach can reach only the select few who are present. Instead, most scientists present their results in peer-reviewed manuscripts that are published in scientific journals. A scientific paper is very different from creative writing. Although creativity is required to design experiments, there are fixed guidelines when it comes to presenting scientific results. First, scientific writing must be brief, concise, and accurate. A scientific paper needs to be succinct but detailed enough to allow peers to reproduce the experiments. The scientific paper consists of several specific sections—introduction, materials and methods, results, and discussion. This structure is sometimes called the “IMRaD” format. There are usually acknowledgment and reference sections as well as an The The Some journals require a results section followed by a discussion section, but it is more common to combine both. If the journal does not allow the combination of both sections, the Finally, the
Section SummaryBiology is the science that studies living organisms and their interactions with one another and their environments. Science attempts to describe and understand the nature of the universe in whole or in part by rational means. Science has many fields; those fields related to the physical world and its phenomena are considered natural sciences. Science can be basic or applied. The main goal of basic science is to expand knowledge without any expectation of short-term practical application of that knowledge. The primary goal of applied research, however, is to solve practical problems. Two types of logical reasoning are used in science. Inductive reasoning uses particular results to produce general scientific principles. Deductive reasoning is a form of logical thinking that predicts results by applying general principles. The common thread throughout scientific research is the use of the scientific method, a step-based process that consists of making observations, defining a problem, posing hypotheses, testing these hypotheses, and drawing one or more conclusions. The testing uses proper controls. Scientists present their results in peer-reviewed scientific papers published in scientific journals. A scientific research paper consists of several well-defined sections: introduction, materials and methods, results, and, finally, a concluding discussion. Review papers summarize the research done in a particular field over a period of time. Art ConnectionsExercise 1Figure 5. In the example below, the scientific method is used to solve an everyday problem. Order the scientific method steps (numbered items) with the process of solving the everyday problem (lettered items). Based on the results of the experiment, is the hypothesis correct? If it is incorrect, propose some alternative hypotheses.
Show/Hide Solution Figure 5. 1: C; 2: F; 3: A; 4: B; 5: D; 6: E. The original hypothesis is incorrect, as the coffeemaker works when plugged into the outlet. Alternative hypotheses include that the coffee maker might be broken or that the coffee maker wasn’t turned on. Exercise 2Figure 6. Decide if each of the following is an example of inductive or deductive reasoning.
Show/Hide Solution Figure 6. 1: inductive; 2: deductive; 3: deductive; 4: inductive. Review QuestionsExercise 3The first forms of life on Earth were ________.
Show/Hide Solution B Exercise 4A suggested and testable explanation for an event is called a ________.
Show/Hide Solution A Exercise 5Which of the following sciences is not considered a natural science?
Show/Hide Solution D Exercise 6The type of logical thinking that uses related observations to arrive at a general conclusion is called ________.
Show/Hide Solution D Exercise 7The process of ________ helps to ensure that a scientist’s research is original, significant, logical, and thorough.
Show/Hide Solution C Exercise 8A person notices that her houseplants that are regularly exposed to music seem to grow more quickly than those in rooms with no music. As a result, she determines that plants grow better when exposed to music. This example most closely resembles which type of reasoning?
Show/Hide Solution A Free ResponseExercise 9Although the scientific method is used by most of the sciences, it can also be applied to everyday situations. Think about a problem that you may have at home, at school, or with your car, and apply the scientific method to solve it. Show/Hide Solution Answers will vary, but should apply the steps of the scientific method. One possibility could be a car which doesn’t start. The hypothesis could be that the car doesn’t start because the battery is dead. The experiment would be to change the battery or to charge the battery and then check whether the car starts or not. If it starts, the problem was due to the battery, and the hypothesis is accepted. Exercise 10Give an example of how applied science has had a direct effect on your daily life. Show/Hide Solution Answers will vary. One example of how applied science has had a direct effect on daily life is the presence of vaccines. Vaccines to prevent diseases such polio, measles, tetanus, and even influenza affect daily life by contributing to individual and societal health. Exercise 11Name two topics that are likely to be studied by biologists, and two areas of scientific study that would fall outside the realm of biology. Show/Hide Solution Answers will vary. Topics that fall inside the area of biological study include how diseases affect human bodies, how pollution impacts a species’ habitat, and how plants respond to their environments. Topics that fall outside of biology (the “study of life”) include how metamorphic rock is formed and how planetary orbits function. Exercise 12Thinking about the topic of cancer, write a basic science question and an applied science question that a researcher interested in this topic might ask Show/Hide Solution Answers will vary. Basic science: What evolutionary purpose might cancer serve? Applied science: What strategies might be found to prevent cancer from reproducing at the cellular level? Glossaryabstract applied science basic science biology conclusion control deductive reasoning descriptive science discussion falsifiable hypothesis hypothesis-based science inductive reasoning introduction life science materials and methods natural science peer-reviewed manuscript physical science plagiarism results review article science scientific method serendipity theory variable
|