1-2-2. Atoms, Isotopes, Ions, and Molecules: The Building BlocksLearning Objectives
At its most fundamental level, life is made up of matter. Each element is designated by its chemical symbol, which is a single capital letter or, when the first letter is already “taken” by another element, a combination of two letters. Some elements follow the English term for the element, such as C for carbon and Ca for calcium. Other elements’ chemical symbols derive from their Latin names; for example, the symbol for sodium is Na, referring to natrium, the Latin word for sodium. The four elements common to all living organisms are oxygen (O), carbon (C), hydrogen (H), and nitrogen (N). In the non-living world, elements are found in different proportions, and some elements common to living organisms are relatively rare on the earth as a whole, as shown in Table 1. For example, the atmosphere is rich in nitrogen and oxygen but contains little carbon and hydrogen, while the earth’s crust, although it contains oxygen and a small amount of hydrogen, has little nitrogen and carbon. In spite of their differences in abundance, all elements and the chemical reactions between them obey the same chemical and physical laws regardless of whether they are a part of the living or non-living world. Table 1. Approximate Percentage of Elements in Living Organisms (Humans) Compared to the Non-living World
The Structure of the AtomTo understand how elements come together, we must first discuss the smallest component or building block of an element, the atom. An An atom is composed of two regions: the Protons and neutrons have approximately the same mass, about 1.67 × 10-24 grams. Scientists arbitrarily define this amount of mass as one atomic mass unit (amu) or one Dalton, as shown in Table 2. Although similar in mass, protons and neutrons differ in their electric charge. A Accounting for the sizes of protons, neutrons, and electrons, most of the volume of an atom—greater than 99 percent—is, in fact, empty space. With all this empty space, one might ask why so-called solid objects do not just pass through one another. The reason they do not is that the electrons that surround all atoms are negatively charged and negative charges repel each other. Table 2. Protons, Neutrons, and Electrons
Atomic Number and MassAtoms of each element contain a characteristic number of protons and electrons. The number of protons determines an element’s Art ConnectionHow many neutrons do carbon-12 and carbon-13 have, respectively? Isotopes
Evolution ConnectionCarbon DatingCarbon is normally present in the atmosphere in the form of gaseous compounds like carbon dioxide and methane. Carbon-14 (14C) is a naturally occurring radioisotope that is created in the atmosphere from atmospheric 14N (nitrogen) by the addition of a neutron and the loss of a proton because of cosmic rays. This is a continuous process, so more 14C is always being created. As a living organism incorporates 14C initially as carbon dioxide fixed in the process of photosynthesis, the relative amount of 14C in its body is equal to the concentration of 14C in the atmosphere. When an organism dies, it is no longer ingesting 14C, so the ratio between 14C and 12C will decline as 14C decays gradually to 14N by a process called beta decay—the emission of electrons or positrons. This decay gives off energy in a slow process. After approximately 5,730 years, half of the starting concentration of 14C will have been converted back to 14N. The time it takes for half of the original concentration of an isotope to decay back to its more stable form is called its half-life. Because the half-life of 14C is long, it is used to date formerly living objects such as old bones or wood. Comparing the ratio of the 14C concentration found in an object to the amount of 14C detected in the atmosphere, the amount of the isotope that has not yet decayed can be determined. On the basis of this amount, the age of the material, such as the pygmy mammoth shown in Figure 3, can be calculated with accuracy if it is not much older than about 50,000 years. Other elements have isotopes with different half lives. For example, 40K (potassium-40) has a half-life of 1.25 billion years, and 235U (Uranium 235) has a half-life of about 700 million years. Through the use of radiometric dating, scientists can study the age of fossils or other remains of extinct organisms to understand how organisms have evolved from earlier species.
Link to Learning
To learn more about atoms, isotopes, and how to tell one isotope from another, visit this site and run the simulation. The Periodic TableThe different elements are organized and displayed in the In the periodic table, shown in Figure 4, the elements are organized and displayed according to their atomic number and are arranged in a series of rows and columns based on shared chemical and physical properties. In addition to providing the atomic number for each element, the periodic table also displays the element’s atomic mass. Looking at carbon, for example, its symbol (C) and name appear, as well as its atomic number of six (in the upper left-hand corner) and its atomic mass of 12.11. The periodic table groups elements according to chemical properties. The differences in chemical reactivity between the elements are based on the number and spatial distribution of an atom’s electrons. Atoms that chemically react and bond to each other form molecules. Electron Shells and the Bohr ModelIt should be stressed that there is a connection between the number of protons in an element, the atomic number that distinguishes one element from another, and the number of electrons it has. In all electrically neutral atoms, the number of electrons is the same as the number of protons. Thus, each element, at least when electrically neutral, has a characteristic number of electrons equal to its atomic number. An early model of the atom was developed in 1913 by Danish scientist Niels Bohr (1885–1962). The Bohr model shows the atom as a central nucleus containing protons and neutrons, with the electrons in circular Electrons fill orbitals in a consistent order: they first fill the orbitals closest to the nucleus, then they continue to fill orbitals of increasing energy further from the nucleus. If there are multiple orbitals of equal energy, they will be filled with one electron in each energy level before a second electron is added. The electrons of the outermost energy level determine the energetic stability of the atom and its tendency to form chemical bonds with other atoms to form molecules. Under standard conditions, atoms fill the inner shells first, often resulting in a variable number of electrons in the outermost shell. The innermost shell has a maximum of two electrons but the next two electron shells can each have a maximum of eight electrons. This is known as the Art ConnectionAn atom may give, take, or share electrons with another atom to achieve a full valence shell, the most stable electron configuration. Looking at this figure, how many electrons do elements in group 1 need to lose in order to achieve a stable electron configuration? How many electrons do elements in groups 14 and 17 need to gain to achieve a stable configuration? Understanding that the organization of the periodic table is based on the total number of protons (and electrons) helps us know how electrons are distributed among the outer shell. The periodic table is arranged in columns and rows based on the number of electrons and where these electrons are located. Take a closer look at the some of the elements in the table’s far right column in Figure 4. The group 18 atoms helium (He), neon (Ne), and argon (Ar) all have filled outer electron shells, making it unnecessary for them to share electrons with other atoms to attain stability; they are highly stable as single atoms. Their non-reactivity has resulted in their being named the Electron OrbitalsAlthough useful to explain the reactivity and chemical bonding of certain elements, the Bohr model of the atom does not accurately reflect how electrons are spatially distributed surrounding the nucleus. They do not circle the nucleus like the earth orbits the sun, but are found in Recall that the Bohr model depicts an atom’s electron shell configuration. Within each electron shell are subshells, and each subshell has a specified number of orbitals containing electrons. While it is impossible to calculate exactly where an electron is located, scientists know that it is most probably located within its orbital path. Subshells are designated by the letter s, p, d, and f. The s subshell is spherical in shape and has one orbital. Principal shell 1n has only a single s orbital, which can hold two electrons. Principal shell 2n has one s and one p subshell, and can hold a total of eight electrons. The p subshell has three dumbbell-shaped orbitals, as illustrated in Figure 7. Subshells d and f have more complex shapes and contain five and seven orbitals, respectively. These are not shown in the illustration. Principal shell 3n has s, p, and d subshells and can hold 18 electrons. Principal shell 4n has s, p, d and f orbitals and can hold 32 electrons. Moving away from the nucleus, the number of electrons and orbitals found in the energy levels increases. Progressing from one atom to the next in the periodic table, the electron structure can be worked out by fitting an extra electron into the next available orbital. The closest orbital to the nucleus, called the 1s orbital, can hold up to two electrons. This orbital is equivalent to the innermost electron shell of the Bohr model of the atom. It is called the 1s orbital because it is spherical around the nucleus. The 1s orbital is the closest orbital to the nucleus, and it is always filled first, before any other orbital can be filled. Hydrogen has one electron; therefore, it has only one spot within the 1s orbital occupied. This is designated as 1s1, where the superscripted 1 refers to the one electron within the 1s orbital. Helium has two electrons; therefore, it can completely fill the 1s orbital with its two electrons. This is designated as 1s2, referring to the two electrons of helium in the 1s orbital. On the periodic table Figure 4, hydrogen and helium are the only two elements in the first row (period); this is because they only have electrons in their first shell, the 1s orbital. Hydrogen and helium are the only two elements that have the 1s and no other electron orbitals in the electrically neutral state. The second electron shell may contain eight electrons. This shell contains another spherical s orbital and three “dumbbell” shaped p orbitals, each of which can hold two electrons, as shown in Figure 7. After the 1s orbital is filled, the second electron shell is filled, first filling its 2s orbital and then its three p orbitals. When filling the p orbitals, each takes a single electron; once each p orbital has an electron, a second may be added. Lithium (Li) contains three electrons that occupy the first and second shells. Two electrons fill the 1s orbital, and the third electron then fills the 2s orbital. Its
Link to Learning
Watch this visual animation to see the spatial arrangement of the p and s orbitals. Chemical Reactions and MoleculesAll elements are most stable when their outermost shell is filled with electrons according to the octet rule. This is because it is energetically favorable for atoms to be in that configuration and it makes them stable. However, since not all elements have enough electrons to fill their outermost shells, atoms form
2H + O → H2O An example of a simple chemical reaction is the breaking down of hydrogen peroxide molecules, each of which consists of two hydrogen atoms bonded to two oxygen atoms (H2O2). The reactant hydrogen peroxide is broken down into water, containing one oxygen atom bound to two hydrogen atoms (H2O), and oxygen, which consists of two bonded oxygen atoms (O2). In the equation below, the reaction includes two hydrogen peroxide molecules and two water molecules. This is an example of a 2H2O2 (hydrogen peroxide) → 2H2O (water) + O2 Even though all of the reactants and products of this reaction are molecules (each atom remains bonded to at least one other atom), in this reaction only hydrogen peroxide and water are representative of a subclass of molecules known as Some chemical reactions, such as the one shown above, can proceed in one direction until the reactants are all used up. The equations that describe these reactions contain a unidirectional arrow and are For example, in human blood, excess hydrogen ions (H+) bind to bicarbonate ions (HCO3-) forming an equilibrium state with carbonic acid (H2CO3). If carbonic acid were added to this system, some of it would be converted to bicarbonate and hydrogen ions. HCO3- + H+ ↔ H2CO3 In biological reactions, however, equilibrium is rarely obtained because the concentrations of the reactants or products or both are constantly changing, often with a product of one reaction being a reactant for another. To return to the example of excess hydrogen ions in the blood, the formation of carbonic acid will be the major direction of the reaction. However, the carbonic acid can also leave the body as carbon dioxide gas (via exhalation) instead of being converted back to bicarbonate ion, thus driving the reaction to the right by the chemical law known as HCO3- + H+ ↔ H2CO3 ↔ CO2 + H2O Ions and Ionic BondsSome atoms are more stable when they gain or lose an electron (or possibly two) and form ions. This fills their outermost electron shell and makes them energetically more stable. Because the number of electrons does not equal the number of protons, each ion has a net charge. This movement of electrons from one element to another is referred to as
Certain salts are referred to in physiology as Covalent Bonds and Other Bonds and InteractionsAnother way the octet rule can be satisfied is by the sharing of electrons between atoms to form The strength of different levels of covalent bonding is one of the main reasons living organisms have a difficult time in acquiring nitrogen for use in constructing their molecules, even though molecular nitrogen, N2, is the most abundant gas in the atmosphere. Molecular nitrogen consists of two nitrogen atoms triple bonded to each other and, as with all molecules, the sharing of these three pairs of electrons between the two nitrogen atoms allows for the filling of their outer electron shells, making the molecule more stable than the individual nitrogen atoms. This strong triple bond makes it difficult for living systems to break apart this nitrogen in order to use it as constituents of proteins and DNA. The formation of water molecules provides an example of covalent bonding. The hydrogen and oxygen atoms that combine to form water molecules are bound together by covalent bonds, as shown in Figure 8. The electron from the hydrogen splits its time between the incomplete outer shell of the hydrogen atoms and the incomplete outer shell of the oxygen atoms. To completely fill the outer shell of oxygen, which has six electrons in its outer shell but which would be more stable with eight, two electrons (one from each hydrogen atom) are needed: hence the well-known formula H2O. The electrons are shared between the two elements to fill the outer shell of each, making both elements more stable.
Link to Learning
View this short video to see an animation of ionic and covalent bonding. Polar Covalent BondsThere are two types of covalent bonds: polar and nonpolar. In a Water is a polar molecule, with the hydrogen atoms acquiring a partial positive charge and the oxygen a partial negative charge. This occurs because the nucleus of the oxygen atom is more attractive to the electrons of the hydrogen atoms than the hydrogen nucleus is to the oxygen’s electrons. Thus oxygen has a higher Nonpolar Covalent Bonds
Another example of a nonpolar covalent bond is methane (CH4), also shown in Figure 11. Carbon has four electrons in its outermost shell and needs four more to fill it. It gets these four from four hydrogen atoms, each atom providing one, making a stable outer shell of eight electrons. Carbon and hydrogen do not have the same electronegativity but are similar; thus, nonpolar bonds form. The hydrogen atoms each need one electron for their outermost shell, which is filled when it contains two electrons. These elements share the electrons equally among the carbons and the hydrogen atoms, creating a nonpolar covalent molecule. Hydrogen Bonds and Van Der Waals InteractionsIonic and covalent bonds between elements require energy to break. Iconic bonds are not as strong as covalent, which determines their behavior in biological systems. However, not all bonds are ionic or covalent bonds. Weaker bonds can also form between molecules. Two weak bonds that occur frequently are hydrogen bonds and van der Waals interactions. Without these two types of bonds, life as we know it would not exist. Hydrogen bonds provide many of the critical, life-sustaining properties of water and also stabilize the structures of proteins and DNA, the building block of cells. When polar covalent bonds containing hydrogen form, the hydrogen in that bond has a slightly positive charge because hydrogen’s electron is pulled more strongly toward the other element and away from the hydrogen. Because the hydrogen is slightly positive, it will be attracted to neighboring negative charges. When this happens, a weak interaction occurs between the δ+of the hydrogen from one molecule and the δ– charge on the more electronegative atoms of another molecule, usually oxygen or nitrogen, or within the same molecule. This interaction is called a Like hydrogen bonds, Career ConnectionPharmaceutical ChemistPharmaceutical chemists are responsible for the development of new drugs and trying to determine the mode of action of both old and new drugs. They are involved in every step of the drug development process. Drugs can be found in the natural environment or can be synthesized in the laboratory. In many cases, potential drugs found in nature are changed chemically in the laboratory to make them safer and more effective, and sometimes synthetic versions of drugs substitute for the version found in nature. After the initial discovery or synthesis of a drug, the chemist then develops the drug, perhaps chemically altering it, testing it to see if the drug is toxic, and then designing methods for efficient large-scale production. Then, the process of getting the drug approved for human use begins. In the United States, drug approval is handled by the Food and Drug Administration (FDA) and involves a series of large-scale experiments using human subjects to make sure the drug is not harmful and effectively treats the condition it aims to treat. This process often takes several years and requires the participation of physicians and scientists, in addition to chemists, to complete testing and gain approval. An example of a drug that was originally discovered in a living organism is Paclitaxel (Taxol), an anti-cancer drug used to treat breast cancer. This drug was discovered in the bark of the pacific yew tree. Another example is aspirin, originally isolated from willow tree bark. Finding drugs often means testing hundreds of samples of plants, fungi, and other forms of life to see if any biologically active compounds are found within them. Sometimes, traditional medicine can give modern medicine clues to where an active compound can be found. For example, the use of willow bark to make medicine has been known for thousands of years, dating back to ancient Egypt. It was not until the late 1800s, however, that the aspirin molecule, known as acetylsalicylic acid, was purified and marketed for human use. Occasionally, drugs developed for one use are found to have unforeseen effects that allow these drugs to be used in other, unrelated ways. For example, the drug minoxidil (Rogaine) was originally developed to treat high blood pressure. When tested on humans, it was noticed that individuals taking the drug would grow new hair. Eventually the drug was marketed to men and women with baldness to restore lost hair. The career of the pharmaceutical chemist may involve detective work, experimentation, and drug development, all with the goal of making human beings healthier. Section SummaryMatter is anything that occupies space and has mass. It is made up of elements. All of the 92 elements that occur naturally have unique qualities that allow them to combine in various ways to create molecules, which in turn combine to form cells, tissues, organ systems, and organisms. Atoms, which consist of protons, neutrons, and electrons, are the smallest units of an element that retain all of the properties of that element. Electrons can be transferred, shared, or cause charge disparities between atoms to create bonds, including ionic, covalent, and hydrogen bonds, as well as van der Waals interactions. Art ConnectionsExercise 1Figure 2. How many neutrons do carbon-12 and carbon-13 have, respectively? Show/Hide Solution Figure 2. Carbon-12 has six neutrons. Carbon-13 has seven neutrons. Exercise 2Figure 6. An atom may give, take, or share electrons with another atom to achieve a full valence shell, the most stable electron configuration. Looking at this figure, how many electrons do elements in group 1 need to lose in order to achieve a stable electron configuration? How many electrons do elements in groups 14 and 17 need to gain to achieve a stable configuration? Show/Hide Solution Figure 6. Elements in group 1 need to lose one electron to achieve a stable electron configuration. Elements in groups 14 and 17 need to gain four and one electrons, respectively, to achieve a stable configuration. Review QuestionsExercise 3If xenon has an atomic number of 54 and a mass number of 108, how many neutrons does it have?
Show/Hide Solution A Exercise 4Atoms that vary in the number of neutrons found in their nuclei are called ________.
Show/Hide Solution D Exercise 5Potassium has an atomic number of 19. What is its electron configuration?
Show/Hide Solution C Exercise 6Which type of bond represents a weak chemical bond?
Show/Hide Solution A Free ResponseExercise 7What makes ionic bonds different from covalent bonds? Show/Hide Solution Ionic bonds are created between ions. The electrons are not shared between the atoms, but rather are associated more with one ion than the other. Ionic bonds are strong bonds, but are weaker than covalent bonds, meaning it takes less energy to break an ionic bond compared with a covalent one. Exercise 8Why are hydrogen bonds and van der Waals interactions necessary for cells? Show/Hide Solution Hydrogen bonds and van der Waals interactions form weak associations between different molecules or within different regions of the same molecule. They provide the structure and shape necessary for proteins and DNA within cells so that they function properly. Glossaryanion atom atomic mass atomic number balanced chemical equation cation chemical bond chemical reaction chemical reactivity compound covalent bond electrolyte electron electron configuration electron orbital electron transfer electronegativity element equilibrium hydrogen bond inert gas ion ionic bond irreversible chemical reaction isotope law of mass action mass number matter molecule neutron noble gas nonpolar covalent bond nucleus octet rule orbital periodic table polar covalent bond product proton radioisotope reactant reversible chemical reaction valence shell van der Waals interaction
|