5-1-3. Virus Infections and HostsLearning Objectives
Viruses can be seen as obligate, intracellular parasites. A virus must attach to a living cell, be taken inside, manufacture its proteins and copy its genome, and find a way to escape the cell so that the virus can infect other cells. Viruses can infect only certain species of hosts and only certain cells within that host. Cells that a virus may use to replicate are called Steps of Virus InfectionsA virus must use cell processes to replicate. The viral replication cycle can produce dramatic biochemical and structural changes in the host cell, which may cause cell damage. These changes, called AttachmentA virus attaches to a specific receptor site on the host cell membrane through attachment proteins in the capsid or via glycoproteins embedded in the viral envelope. The specificity of this interaction determines the host—and the cells within the host—that can be infected by a particular virus. This can be illustrated by thinking of several keys and several locks, where each key will fit only one specific lock.
Link to Learning
This video explains how influenza attacks the body. EntryThe nucleic acid of bacteriophages enters the host cell naked, leaving the capsid outside the cell. Plant and animal viruses can enter through endocytosis, in which the cell membrane surrounds and engulfs the entire virus. Some enveloped viruses enter the cell when the viral envelope fuses directly with the cell membrane. Once inside the cell, the viral capsid is degraded, and the viral nucleic acid is released, which then becomes available for replication and transcription. Replication and AssemblyThe replication mechanism depends on the viral genome. DNA viruses usually use host cell proteins and enzymes to make additional DNA that is transcribed to messenger RNA (mRNA), which is then used to direct protein synthesis. RNA viruses usually use the RNA core as a template for synthesis of viral genomic RNA and mRNA. The viral mRNA directs the host cell to synthesize viral enzymes and capsid proteins, and assemble new virions. Of course, there are exceptions to this pattern. If a host cell does not provide the enzymes necessary for viral replication, viral genes supply the information to direct synthesis of the missing proteins. Retroviruses, such as HIV, have an RNA genome that must be reverse transcribed into DNA, which then is incorporated into the host cell genome. They are within group VI of the Baltimore classification scheme. To convert RNA into DNA, retroviruses must contain genes that encode the virus-specific enzyme reverse transcriptase that transcribes an RNA template to DNA. Reverse transcription never occurs in uninfected host cells—the needed enzyme reverse transcriptase is only derived from the expression of viral genes within the infected host cells. The fact that HIV produces some of its own enzymes not found in the host has allowed researchers to develop drugs that inhibit these enzymes. These drugs, including the reverse transcriptase inhibitor EgressThe last stage of viral replication is the release of the new virions produced in the host organism, where they are able to infect adjacent cells and repeat the replication cycle. As you’ve learned, some viruses are released when the host cell dies, and other viruses can leave infected cells by budding through the membrane without directly killing the cell. Art ConnectionInfluenza virus is packaged in a viral envelope that fuses with the plasma membrane. This way, the virus can exit the host cell without killing it. What advantage does the virus gain by keeping the host cell alive?
Link to Learning
Click through a tutorial on viruses, identifying structures, modes of transmission, replication, and more. Different Hosts and Their VirusesAs you’ve learned, viruses are often very specific as to which hosts and which cells within the host they will infect. This feature of a virus makes it specific to one or a few species of life on Earth. On the other hand, so many different types of viruses exist on Earth that nearly every living organism has its own set of viruses that tries to infect its cells. Even the smallest and simplest of cells, prokaryotic bacteria, may be attacked by specific types of viruses. Bacteriophages
Art ConnectionWhich of the following statements is false?
Animal VirusesAnimal viruses, unlike the viruses of plants and bacteria, do not have to penetrate a cell wall to gain access to the host cell. Non-enveloped or “naked” animal viruses may enter cells in two different ways. As a protein in the viral capsid binds to its receptor on the host cell, the virus may be taken inside the cell via a vesicle during the normal cell process of receptor-mediated endocytosis. An alternative method of cell penetration used by non-enveloped viruses is for capsid proteins to undergo shape changes after binding to the receptor, creating channels in the host cell membrane. The viral genome is then “injected” into the host cell through these channels in a manner analogous to that used by many bacteriophages. Enveloped viruses also have two ways of entering cells after binding to their receptors: receptor-mediated endocytosis, or After making their proteins and copying their genomes, animal viruses complete the assembly of new virions and exit the cell. As we have already discussed using the example of HIV, enveloped animal viruses may bud from the cell membrane as they assemble themselves, taking a piece of the cell’s plasma membrane in the process. On the other hand, non-enveloped viral progeny, such as rhinoviruses, accumulate in infected cells until there is a signal for lysis or apoptosis, and all virions are released together. As you will learn in the next module, animal viruses are associated with a variety of human diseases. Some of them follow the classic pattern of In hepatitis C infections, the virus grows and reproduces in liver cells, causing low levels of liver damage. The damage is so low that infected individuals are often unaware that they are infected, and many infections are detected only by routine blood work on patients with risk factors such as intravenous drug use. On the other hand, since many of the symptoms of viral diseases are caused by immune responses, a lack of symptoms is an indication of a weak immune response to the virus. This allows for the virus to escape elimination by the immune system and persist in individuals for years, all the while producing low levels of progeny virions in what is known as a chronic viral disease. Chronic infection of the liver by this virus leads to a much greater chance of developing liver cancer, sometimes as much as 30 years after the initial infection. As already discussed, herpes simplex virus can remain in a state of latency in nervous tissue for months, even years. As the virus “hides” in the tissue and makes few if any viral proteins, there is nothing for the immune response to act against, and immunity to the virus slowly declines. Under certain conditions, including various types of physical and psychological stress, the latent herpes simplex virus may be reactivated and undergo a lytic replication cycle in the skin, causing the lesions associated with the disease. Once virions are produced in the skin and viral proteins are synthesized, the immune response is again stimulated and resolves the skin lesions in a few days by destroying viruses in the skin. As a result of this type of replicative cycle, appearances of cold sores and genital herpes outbreaks only occur intermittently, even though the viruses remain in the nervous tissue for life. Latent infections are common with other herpesviruses as well, including the varicella-zoster virus that causes chickenpox. After having a chickenpox infection in childhood, the varicella-zoster virus can remain latent for many years and reactivate in adults to cause the painful condition known as “shingles” (Figure 4ab). Some animal-infecting viruses, including the hepatitis C virus discussed above, are known as
Link to Learning
Visit the interactive animations showing the various stages of the replicative cycles of animal viruses and click on the flash animation links. Plant VirusesPlant viruses, like other viruses, contain a core of either DNA or RNA. You have already learned about one of these, the tobacco mosaic virus. As plant viruses have a cell wall to protect their cells, these viruses do not use receptor-mediated endocytosis to enter host cells as is seen with animal viruses. For many plant viruses to be transferred from plant to plant, damage to some of the plants’ cells must occur to allow the virus to enter a new host. This damage is often caused by weather, insects, animals, fire, or human activities like farming or landscaping. Additionally, plant offspring may inherit viral diseases from parent plants. Plant viruses can be transmitted by a variety of vectors, through contact with an infected plant’s sap, by living organisms such as insects and nematodes, and through pollen. When plants viruses are transferred between different plants, this is known as Symptoms of viral diseases vary according to the virus and its host (Table 1). One common symptom is Table 1. Some Common Symptoms of Plant Viral Diseases
Plant viruses can seriously disrupt crop growth and development, significantly affecting our food supply. They are responsible for poor crop quality and quantity globally, and can bring about huge economic losses annually. Others viruses may damage plants used in landscaping. Some viruses that infect agricultural food plants include the name of the plant they infect, such as tomato spotted wilt virus, bean common mosaic virus, and cucumber mosaic virus. In plants used for landscaping, two of the most common viruses are peony ring spot and rose mosaic virus. There are far too many plant viruses to discuss each in detail, but symptoms of bean common mosaic virus result in lowered bean production and stunted, unproductive plants. In the ornamental rose, the rose mosaic disease causes wavy yellow lines and colored splotches on the leaves of the plant. Section SummaryViral replication within a living cell always produces changes in the cell, sometimes resulting in cell death and sometimes slowly killing the infected cells. There are six basic stages in the virus replication cycle: attachment, penetration, uncoating, replication, assembly, and release. A viral infection may be productive, resulting in new virions, or nonproductive, which means that the virus remains inside the cell without producing new virions. Bacteriophages are viruses that infect bacteria. They have two different modes of replication: the lytic cycle, where the virus replicates and bursts out of the bacteria, and the lysogenic cycle, which involves the incorporation of the viral genome into the bacterial host genome. Animal viruses cause a variety of infections, with some causing chronic symptoms (hepatitis C), some intermittent symptoms (latent viruses such a herpes simplex virus 1), and others that cause very few symptoms, if any (human herpesviruses 6 and 7). Oncogenic viruses in animals have the ability to cause cancer by interfering with the regulation of the host cell cycle. Viruses of plants are responsible for significant economic damage in both agriculture and plants used for ornamentation. Art ConnectionsExercise 1Figure 1. Influenza virus is packaged in a viral envelope that fuses with the plasma membrane. This way, the virus can exit the host cell without killing it. What advantage does the virus gain by keeping the host cell alive? Show/Hide Solution Figure 1. The host cell can continue to make new virus particles. Exercise 2Figure 3. Which of the following statements is false?
Show/Hide Solution Figure 3. C Review QuestionsExercise 3Which statement is not true of viral replication?
Show/Hide Solution D Exercise 4Which statement is true of viral replication?
Show/Hide Solution B Exercise 5Which statement is true of reverse transcriptase?
Show/Hide Solution C Exercise 6Oncogenic virus cores can be_______.
Show/Hide Solution D Exercise 7Which is true of DNA viruses?
Show/Hide Solution A Exercise 8A bacteriophage can infect ________.
Show/Hide Solution D Free ResponseExercise 9Why can’t dogs catch the measles? Show/Hide Solution The virus can’t attach to dog cells, because dog cells do not express the receptors for the virus and/or there is no cell within the dog that is permissive for viral replication. Exercise 10One of the first and most important targets for drugs to fight infection with HIV (a retrovirus) is the reverse transcriptase enzyme. Why? Show/Hide Solution Reverse transcriptase is needed to make more HIV-1 viruses, so targeting the reverse transcriptase enzyme may be a way to inhibit the replication of the virus. Importantly, by targeting reverse transcriptase, we do little harm to the host cell, since host cells do not make reverse transcriptase. Thus, we can specifically attack the virus and not the host cell when we use reverse transcriptase inhibitors. Exercise 11In this section, you were introduced to different types of viruses and viral diseases. Briefly discuss the most interesting or surprising thing you learned about viruses. Show/Hide Solution Answer is open and will vary. Exercise 12Although plant viruses cannot infect humans, what are some of the ways in which they affect humans? Show/Hide Solution Plant viruses infect crops, causing crop damage and failure, and considerable economic losses. Glossaryacute disease asymptomatic disease AZT bacteriophage budding cell necrosis chronic infection cytopathic fusion gall horizontal transmission hyperplasia hypoplasia intermittent symptom latency lysis lytic cycle lysogenic cycle oncogenic virus permissive productive prophage vertical transmission
|