Home Previous TOC Next Bookshelf

THE EVIDENCES OF EVOLUTION—HOW IT CAME ABOUT

§ 1

Progress in Evolution

There has often been slipping back and degeneracy in the course of evolution, but the big fact is that there has been progress. For millions of years Life has been slowly creeping upwards, and if we compare the highest animals—Birds and Mammals—with their predecessors, we must admit that they are more controlled, more masters of their fate, with more mentality. Evolution is on the whole integrative; that is to say, it makes against instability and disorder, and towards harmony and progress. Even in the rise of Birds and Mammals we can discern that the evolutionary process was making towards a fuller embodiment or expression of what Man values most—control, freedom, understanding, and love. The advance of animal life through the ages has been chequered, but on the whole it has been an advance towards increasing fullness, freedom, and fitness of life. In the study of this advance—the central fact of Organic Evolution—there is assuredly much for Man's instruction and much for his encouragement.

Evidences of Evolution

In all this, it may be said, the fact of evolution has been taken for granted, but what are the evidences? Perhaps it should be frankly answered that the idea of evolution, that the present is the child of the past and the parent of the future, cannot be proved as one may prove the Law of Gravitation. All that can be done is to show that it is a key—a way of looking at things—that fits the facts. There is no lock that it does not open.

But if the facts that the evolution theory vividly interprets be called the evidences of its validity, there is no lack of them. There is historical evidence; and what is more eloquent than the general fact that fishes emerge before amphibians, and these before reptiles, and these before birds, and so on? There are wonderfully complete fossil series, e.g. among cuttlefishes, in which we can almost see evolution in process. The pedigree of horse and elephant and crocodile is in general very convincing, though it is to be confessed that there are other cases in regard to which we have no light. Who can tell, for instance, how Vertebrates arose or from what origin?

There is embryological evidence, for the individual development often reads like an abbreviated recapitulation of the presumed evolution of the race. The mammal's visceral clefts are tell-tale evidence of remote aquatic ancestors, breathing by gills. Something is known in regard to the historical evolution of antlers in bygone ages; the Red Deer of to-day recapitulates at least the general outlines of the history. The individual development of an asymmetrical flat-fish, like a plaice or sole, which rests and swims on one side, tells us plainly that its ancestors were symmetrical fishes.

There is what might be called physiological evidence, for many plants and animals are variable before our eyes, and evolution is going on around us to-day. This is familiarly seen among domesticated animals and cultivated plants, but there is abundant flux in Wild Nature. It need hardly be said that some organisms are very conservative, and that change need not be expected when a position of stable equilibrium has been secured.

There is also anatomical evidence of a most convincing quality. In the fore-limbs of backboned animals, say, the paddle of a turtle, the wing of a bird, the flipper of a whale, the fore-leg of a horse, and the arm of a man; the same essential bones and muscles are used to such diverse results! What could it mean save blood relationship? And as to the two sets of teeth in whalebone whales, which never even cut the gum, is there any alternative but to regard them as relics of useful teeth which ancestral forms possessed? In short, the evolution theory is justified by the way in which it works.

§ 2

Factors in Evolution

If it be said "So much for the fact of evolution, but what of the factors?" the answer is not easy. For not only is the problem the greatest of all scientific problems, but the inquiry is still very young. The scientific study of evolution practically dates from the publication of The Origin of Species in 1859.

Heritable novelties or variations often crop up in living creatures, and these form the raw material of evolution. These variations are the outcome of expression of changes in the germ-cells that develop into organisms. But why should there be changes in the constitution of the germ-cells? Perhaps because the living material is very complex and inherently liable to change; perhaps because it is the vehicle of a multitude of hereditary items among which there are very likely to be reshufflings or rearrangements; perhaps because the germ-cells have very changeful surroundings (the blood, the body-cavity fluid, the sea-water); perhaps because deeply saturating outside influences, such as change of climate and habitat, penetrate through the body to its germ-cells and provoke them to vary. But we must be patient with the wearisome reiteration of "perhaps." Moreover, every many-celled organism reproduced in the usual way, arises from an egg-cell fertilised by a sperm-cell, and the changes involved in and preparatory to this fertilisation may make new permutations and combinations of the living items and hereditary qualities not only possible but necessary. It is something like shuffling a pack of cards, but the cards are living. As to the changes wrought on the body during its lifetime by peculiarities in nurture, habits, and surroundings, these dents or modifications are often very important for the individual, but it does not follow that they are directly important for the race, since it is not certain that they are transmissible.

Given a crop of variations or new departures or mutations, whatever the inborn novelties may be called, we have then to inquire how these are sifted. The sifting, which means the elimination of the relatively less fit variations and the selection of the relatively more fit, effected in many different ways in the course of the struggle for existence. The organism plays its new card in the game of life, and the consequences may determine survival. The relatively less fit to given conditions will tend to be eliminated, while the relatively more fit will tend to survive. If the variations are hereditary and reappear, perhaps increased in amount, generation after generation, and if the process of sifting continue consistently, the result will be the evolution of the species. The sifting process may be helped by various forms of "isolation" which lessen the range of free intercrossing between members of a species, e.g. by geographical barriers. Interbreeding of similar forms tends to make a stable stock; out-breeding among dissimilars tends to promote variability. But for an outline like this it is enough to suggest the general method of organic evolution: Throughout the ages organisms have been making tentatives—new departures of varying magnitude—and these tentatives have been tested. The method is that of testing all things and holding fast that which is good.