Home Previous TOC Next Bookshelf

3. THE DEEP SEA

Very different from all the other haunts are the depths of the sea, including the floor of the abysses and the zones of water near the bottom. This haunt, forever unseen, occupies more than a third of the earth's surface, and it is thickly peopled. It came into emphatic notice in connection with the mending of telegraph cables, but the results of the Challenger expedition (1873-6) gave the first impressive picture of what was practically a new world.

Physical Conditions

The average depth of the ocean is about two and a half miles; therefore, since many parts are relatively shallow, there must be enormous depths. A few of these, technically called "deeps," are about six miles deep, in which Mount Everest would be engulfed. There is enormous pressure in such depths; even at 2,500 fathoms it is two and a half tons on the square inch. The temperature is on and off the freezing-point of fresh water (28°-34° Fahr.), due to the continual sinking down of cold water from the Poles, especially from the South. Apart from the fitful gleams of luminescent animals, there is utter darkness in the deep waters. The rays of sunlight are practically extinguished at 250 fathoms, though very sensitive bromogelatine plates exposed at 500 fathoms have shown faint indications even at that depth. It is a world of absolute calm and silence, and there is no scenery on the floor. A deep, cold, dark, silent, monotonous world!

Biological Conditions

While some parts of the floor of the abysses are more thickly peopled than others, there is no depth limit to the distribution of life. Wherever the long arm of the dredge has reached, animals have been found, e.g. Protozoa, sponges, corals, worms, starfishes, sea-urchins, sea-lilies, crustaceans, lamp-shells, molluscs, ascidians, and fishes—a very representative fauna. In the absence of light there can be no chlorophyll-possessing plants, and as the animals cannot all be eating one another there must be an extraneous source of food-supply. This is found in the sinking down of minute organisms which are killed on the surface by changes of temperature and other causes. What is left of them, before or after being swallowed, and of sea-dust and mineral particles of various kinds forms the diversified "ooze" of the sea-floor, a soft muddy precipitate, which is said to have in places the consistence of butter in summer weather.

There seems to be no bacteria in the abysses, so there can be no rotting. Everything that sinks down, even the huge carcase of a whale, must be nibbled away by hungry animals and digested, or else, in the case of most bones, slowly dissolved away. Of the whale there are left only the ear-bones, of the shark his teeth.

Adaptations to Deep-sea Life

In adaptation to the great pressure the bodies of deep-sea animals are usually very permeable, so that the water gets through and through them, as in the case of Venus' Flower Basket, a flinty sponge which a child's finger would shiver. But when the pressure inside is the same as that outside nothing happens. In adaptation to the treacherous ooze, so apt to smother, many of the active deep-sea animals have very long, stilt-like legs, and many of the sedentary types are lifted into safety on the end of long stalks which have their bases embedded in the mud. In adaptation to the darkness, in which there is only luminescence that eyes could use, there is a great development of tactility. The interesting problem of luminescence will be discussed elsewhere.

As to the origin of the deep-sea fauna, there seems no doubt that it has arisen by many contributions from the various shore-haunts. Following the down-drifting food, many shore-animals have in the course of many generations reached the world of eternal night and winter, and become adapted to its strange conditions. For the animals of the deep-sea are as fit, beautiful, and vigorous as those elsewhere. There are no slums in Nature.

THE BITTERLING (Rhodeus Amarus)

THE BITTERLING (Rhodeus Amarus)

A Continental fish which lays its eggs by means of a long ovipositor inside the freshwater mussel. The eggs develop inside the mollusc's gill-plates.

WOOLLY OPOSSUM CARRYING HER FAMILY

Photo: W. S. Berridge.

WOOLLY OPOSSUM CARRYING HER FAMILY

One of the young ones is clinging to its mother and has its long prehensile tail coiled round hers.

SURINAM TOAD (Pipa Americana) WITH YOUNG ONES HATCHING OUT OF LITTLE POCKETS ON HER BACK

SURINAM TOAD (Pipa Americana) WITH YOUNG ONES HATCHING OUT OF LITTLE POCKETS ON HER BACK

STORM PETREL OR MOTHER CAREY'S CHICKEN

STORM PETREL OR MOTHER CAREY'S CHICKEN

(Procellaria Pelagica)

This characteristic bird of the open sea does not come to land at all except to nest. It is the smallest web-footed bird, about four inches long. The legs are long and often touch the water as the bird flies. The storm petrel is at home in the Atlantic, and often nests on islands off the west coast of Britain.